Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria

The human gut microbiome, composed of trillions of microorganisms, plays an essential role in human health. Many factors shape gut microbiome composition over the life span, including changes to diet, lifestyle, and medication use. Though not routinely tested during drug development, drugs can exert...

Full description

Saved in:
Bibliographic Details
Main Authors: Laura E. McCoubrey (Author), Moe Elbadawi (Author), Mine Orlu (Author), Simon Gaisford (Author), Abdul W. Basit (Author)
Format: Book
Published: MDPI AG, 2021-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_ebbae4df5a7c474880fcb5b038cac829
042 |a dc 
100 1 0 |a Laura E. McCoubrey  |e author 
700 1 0 |a Moe Elbadawi  |e author 
700 1 0 |a Mine Orlu  |e author 
700 1 0 |a Simon Gaisford  |e author 
700 1 0 |a Abdul W. Basit  |e author 
245 0 0 |a Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria 
260 |b MDPI AG,   |c 2021-07-01T00:00:00Z. 
500 |a 10.3390/pharmaceutics13071026 
500 |a 1999-4923 
520 |a The human gut microbiome, composed of trillions of microorganisms, plays an essential role in human health. Many factors shape gut microbiome composition over the life span, including changes to diet, lifestyle, and medication use. Though not routinely tested during drug development, drugs can exert profound effects on the gut microbiome, potentially altering its functions and promoting disease. This study develops a machine learning (ML) model to predict whether drugs will impair the growth of 40 gut bacterial strains. Trained on over 18,600 drug-bacteria interactions, 13 distinct ML models are built and compared, including tree-based, ensemble, and artificial neural network techniques. Following hyperparameter tuning and multi-metric evaluation, a lead ML model is selected: a tuned extra trees algorithm with performances of AUROC: 0.857 (±0.014), recall: 0.587 (±0.063), precision: 0.800 (±0.053), and f1: 0.666 (±0.042). This model can be used by the pharmaceutical industry during drug development and could even be adapted for use in clinical settings. 
546 |a EN 
690 |a artificial intelligence 
690 |a microbiota 
690 |a drug discovery and development 
690 |a metabolism of biopharmaceuticals and medicines 
690 |a in silico 
690 |a computational prediction and screening 
690 |a Pharmacy and materia medica 
690 |a RS1-441 
655 7 |a article  |2 local 
786 0 |n Pharmaceutics, Vol 13, Iss 7, p 1026 (2021) 
787 0 |n https://www.mdpi.com/1999-4923/13/7/1026 
787 0 |n https://doaj.org/toc/1999-4923 
856 4 1 |u https://doaj.org/article/ebbae4df5a7c474880fcb5b038cac829  |z Connect to this object online.