Investigating the role of dystrophin isoform deficiency in motor function in Duchenne muscular dystrophy

Abstract Background Duchenne muscular dystrophy (DMD) is caused by DMD mutations leading to dystrophin loss. Full‐length Dp427 is the primary dystrophin isoform expressed in muscle and is also expressed in the central nervous system (CNS). Two shorter isoforms, Dp140 and Dp71, are highly expressed i...

Повний опис

Збережено в:
Бібліографічні деталі
Автори: Mary Chesshyre (Автор), Deborah Ridout (Автор), Yasumasa Hashimoto (Автор), Yoko Ookubo (Автор), Silvia Torelli (Автор), Kate Maresh (Автор), Valeria Ricotti (Автор), Lianne Abbott (Автор), Vandana Ayyar Gupta (Автор), Marion Main (Автор), Giulia Ferrari (Автор), Anna Kowala (Автор), Yung‐Yao Lin (Автор), Francesco Saverio Tedesco (Автор), Mariacristina Scoto (Автор), Giovanni Baranello (Автор), Adnan Manzur (Автор), Yoshitsugu Aoki (Автор), Francesco Muntoni (Автор)
Формат: Книга
Опубліковано: Wiley, 2022-04-01T00:00:00Z.
Предмети:
Онлайн доступ:Connect to this object online.
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_f0e9fb8a39b84e67b80fc0751fc0cab9
042 |a dc 
100 1 0 |a Mary Chesshyre  |e author 
700 1 0 |a Deborah Ridout  |e author 
700 1 0 |a Yasumasa Hashimoto  |e author 
700 1 0 |a Yoko Ookubo  |e author 
700 1 0 |a Silvia Torelli  |e author 
700 1 0 |a Kate Maresh  |e author 
700 1 0 |a Valeria Ricotti  |e author 
700 1 0 |a Lianne Abbott  |e author 
700 1 0 |a Vandana Ayyar Gupta  |e author 
700 1 0 |a Marion Main  |e author 
700 1 0 |a Giulia Ferrari  |e author 
700 1 0 |a Anna Kowala  |e author 
700 1 0 |a Yung‐Yao Lin  |e author 
700 1 0 |a Francesco Saverio Tedesco  |e author 
700 1 0 |a Mariacristina Scoto  |e author 
700 1 0 |a Giovanni Baranello  |e author 
700 1 0 |a Adnan Manzur  |e author 
700 1 0 |a Yoshitsugu Aoki  |e author 
700 1 0 |a Francesco Muntoni  |e author 
245 0 0 |a Investigating the role of dystrophin isoform deficiency in motor function in Duchenne muscular dystrophy 
260 |b Wiley,   |c 2022-04-01T00:00:00Z. 
500 |a 2190-6009 
500 |a 2190-5991 
500 |a 10.1002/jcsm.12914 
520 |a Abstract Background Duchenne muscular dystrophy (DMD) is caused by DMD mutations leading to dystrophin loss. Full‐length Dp427 is the primary dystrophin isoform expressed in muscle and is also expressed in the central nervous system (CNS). Two shorter isoforms, Dp140 and Dp71, are highly expressed in the CNS. While a role for Dp140 and Dp71 on DMD CNS comorbidities is well known, relationships between mutations expected to disrupt Dp140 and Dp71 and motor outcomes are not. Methods Functional outcome data from 387 DMD boys aged 4-15 years were subdivided by DMD mutation expected effects on dystrophin isoform expression; Group 1 (Dp427 absent, Dp140/Dp71 present, n = 201); Group 2 (Dp427/Dp140 absent, Dp71 present, n = 152); and Group 3 (Dp427/Dp140/Dp71 absent, n = 34). Relationships between isoform group and North Star ambulatory assessment (NSAA) scores, 10 m walk/run velocities and rise time velocities were explored using regression analysis. Western blot analysis was used to study Dp427, Dp140 and Dp71 production in myogenic cells (control and DMD human), control skeletal muscle, DMD skeletal muscle from the three isoform groups and cerebral cortex from mice (wild‐type and DMD models). Grip strength and rotarod running test were studied in wild‐type mice and DMD mouse models. DMD mouse models were mdx (Dp427 absent, Dp140/Dp71 present), mdx52 (Dp427/Dp140 absent, Dp71 present) and DMD‐null (lacking all isoforms). Results In DMD boys, mean NSAA scores at 5 years of age were 6.1 points lower in Group 3 than Group 1 (P < 0.01) and 4.9 points lower in Group 3 than Group 2 (P = 0.05). Mean peak NSAA scores were 4.0 points lower in Group 3 than Group 1 (P < 0.01) and 1.6 points lower in Group 2 than Group 1 (P = 0.04). Mean four‐limb grip strength was 1.5 g/g lower in mdx52 than mdx mice (P = 0.003) and 1.5 g/g lower in DMD‐null than mdx mice (P = 0.002). Dp71 was produced in myogenic cells (control and DMD human) and skeletal muscle from humans in Groups 1 and 2 and mdx mice, but not skeletal muscle from human controls, myogenic cells and skeletal muscle from humans in Group 3 or skeletal muscle from wild‐type, mdx52 or DMD‐null mice. Conclusions Our results highlight the importance of considering expected effects of DMD mutations on dystrophin isoform production when considering patterns of DMD motor impairment and the implications for clinical practice and clinical trials. Our results suggest a complex relationship between dystrophin isoforms expressed in the brain and DMD motor function. 
546 |a EN 
690 |a Duchenne muscular dystrophy 
690 |a Isoform 
690 |a Motor function 
690 |a Diseases of the musculoskeletal system 
690 |a RC925-935 
690 |a Human anatomy 
690 |a QM1-695 
655 7 |a article  |2 local 
786 0 |n Journal of Cachexia, Sarcopenia and Muscle, Vol 13, Iss 2, Pp 1360-1372 (2022) 
787 0 |n https://doi.org/10.1002/jcsm.12914 
787 0 |n https://doaj.org/toc/2190-5991 
787 0 |n https://doaj.org/toc/2190-6009 
856 4 1 |u https://doaj.org/article/f0e9fb8a39b84e67b80fc0751fc0cab9  |z Connect to this object online.