Ligands can differentially and temporally modulate GPCR interaction with 14-3-3 isoforms

GPCR signaling and function depend on their associated proteins and subcellular locations. Besides G-proteins and β-arrestins, 14-3-3 proteins participate in GPCR trafficking and signaling, and they connect a large number of diverse proteins to form signaling networks. Multiple 14-3-3 isoforms exist...

Full description

Saved in:
Bibliographic Details
Main Authors: Haifeng Eishingdrelo (Author), Xiaofa Qin (Author), Luwa Yuan (Author), Sathapana Kongsamut (Author), Lei Yu (Author)
Format: Book
Published: Elsevier, 2022-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:GPCR signaling and function depend on their associated proteins and subcellular locations. Besides G-proteins and β-arrestins, 14-3-3 proteins participate in GPCR trafficking and signaling, and they connect a large number of diverse proteins to form signaling networks. Multiple 14-3-3 isoforms exist, and a GPCR can differentially interact with different 14-3-3 isoforms in response to agonist treatment. We found that some agonist-induced GPCR/14-3-3 signal intensities can rapidly decrease. We confirmed that this phenomenon of rapidly decreasing agonist-induced GPCR/14-3-3 signal intensity could also be paralleled with GPCR/β-arrestin-2 signals, indicating diminished levels of GPCR/signal adaptor complexes during endocytosis. The temporal signals could implicate either GPCR/14-3-3 complex dissociation or the complex undergoing a degradation process. Furthermore, we found that certain GPCR ligands can regulate GPCR/14-3-3 signals temporally, suggesting a new approach for GPCR drug development by modulating GPCR/14-3-3 signals temporally.
Item Description:2590-2571
10.1016/j.crphar.2022.100123