Prediction and Chemical Interpretation of Singlet-Oxygen-Scavenging Activity of Small Molecule Compounds by Using Machine Learning

A chemically explainable machine learning model was constructed with a small dataset to quantitatively predict the singlet-oxygen-scavenging ability. In this model, ensemble learning based on decision trees resulted in high accuracy. For explanatory variables, molecular descriptors by computational...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Taiki Fujimoto (Автор), Hiroaki Gotoh (Автор)
Формат:
Опубликовано: MDPI AG, 2021-11-01T00:00:00Z.
Предметы:
Online-ссылка:Connect to this object online.
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

Internet

Connect to this object online.

3rd Floor Main Library

Подробно о фондах из 3rd Floor Main Library
Шифр: A1234.567
Копировать 1 Доступно