<i>Tamarindus indica</i> Extract as a Promising Antimicrobial and Antivirulence Therapy
The worldwide crises from multi-drug-resistant (MDR) bacterial infections are pushing us to search for new alternative therapies. The renewed interest in medicinal plants has gained the attention of our research group. <i>Tamarindus indica</i> L. (<i>T. indica</i>) is one of...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2023-02-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The worldwide crises from multi-drug-resistant (MDR) bacterial infections are pushing us to search for new alternative therapies. The renewed interest in medicinal plants has gained the attention of our research group. <i>Tamarindus indica</i> L. (<i>T. indica</i>) is one of the traditional medicines used for a wide range of diseases. Therefore, we evaluated the antimicrobial activities of ethanolic extract of <i>T. indica.</i> The inhibitions zones, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitor concentration indices (FICI) against Gram+ve and −ve pathogens were detected. The bioactive compounds from <i>T. indica</i> extract were identified by mass spectroscopy, thin-layer chromatography, and bio-autographic assay. We performed scanning electron microscopy (SEM) and molecular docking studies to confirm possible mechanisms of actions and antivirulence activities, respectively. We found more promising antimicrobial activities against MDR pathogens with MIC and MBC values for <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>), i.e., (0.78, 3.12 mg/mL) and (1.56, 3.12 mg/mL), respectively. The antimicrobial activities of this extract were attributed to its capability to impair cell membrane permeability, inducing bacterial cell lysis, which was confirmed by the morphological changes observed under SEM. The synergistic interactions between this extract and commonly used antibiotics were confirmed (FICI values < 0.5). The bioactive compounds of this extract were bis (2-ethylhexyl)phthalate, phenol, 2,4-bis(1,1-dimethylethyl), 1,2-benzenedicarboxylic acid, and bis(8-methylnonyl) ester. Additionally, this extract showed antivirulence activities, especially against the <i>S. aureus</i> protease and <i>P. aeruginosa</i> elastase. In conclusion, we hope that pharmaceutical companies can utilize our findings to produce a new formulation of <i>T. indica</i> ethanolic extract with other antibiotics. |
---|---|
Item Description: | 10.3390/antibiotics12030464 2079-6382 |