A method to reduce ancestry related germline false positives in tumor only somatic variant calling

Abstract Background Significant clinical and research applications are driving large scale adoption of individualized tumor sequencing in cancer in order to identify tumors-specific mutations. When a matched germline sample is available, somatic mutations may be identified using comparative callers....

Full description

Saved in:
Bibliographic Details
Main Authors: Rebecca F. Halperin (Author), John D. Carpten (Author), Zarko Manojlovic (Author), Jessica Aldrich (Author), Jonathan Keats (Author), Sara Byron (Author), Winnie S. Liang (Author), Megan Russell (Author), Daniel Enriquez (Author), Ana Claasen (Author), Irene Cherni (Author), Baffour Awuah (Author), Joseph Oppong (Author), Max S. Wicha (Author), Lisa A. Newman (Author), Evelyn Jaigge (Author), Seungchan Kim (Author), David W. Craig (Author)
Format: Book
Published: BMC, 2017-10-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_fde1123b7aa84a3eadeb4956afa4c35d
042 |a dc 
100 1 0 |a Rebecca F. Halperin  |e author 
700 1 0 |a John D. Carpten  |e author 
700 1 0 |a Zarko Manojlovic  |e author 
700 1 0 |a Jessica Aldrich  |e author 
700 1 0 |a Jonathan Keats  |e author 
700 1 0 |a Sara Byron  |e author 
700 1 0 |a Winnie S. Liang  |e author 
700 1 0 |a Megan Russell  |e author 
700 1 0 |a Daniel Enriquez  |e author 
700 1 0 |a Ana Claasen  |e author 
700 1 0 |a Irene Cherni  |e author 
700 1 0 |a Baffour Awuah  |e author 
700 1 0 |a Joseph Oppong  |e author 
700 1 0 |a Max S. Wicha  |e author 
700 1 0 |a Lisa A. Newman  |e author 
700 1 0 |a Evelyn Jaigge  |e author 
700 1 0 |a Seungchan Kim  |e author 
700 1 0 |a David W. Craig  |e author 
245 0 0 |a A method to reduce ancestry related germline false positives in tumor only somatic variant calling 
260 |b BMC,   |c 2017-10-01T00:00:00Z. 
500 |a 10.1186/s12920-017-0296-8 
500 |a 1755-8794 
520 |a Abstract Background Significant clinical and research applications are driving large scale adoption of individualized tumor sequencing in cancer in order to identify tumors-specific mutations. When a matched germline sample is available, somatic mutations may be identified using comparative callers. However, matched germline samples are frequently not available such as with archival tissues, which makes it difficult to distinguish somatic from germline variants. While population databases may be used to filter out known germline variants, recent studies have shown private germline variants result in an inflated false positive rate in unmatched tumor samples, and the number germline false positives in an individual may be related to ancestry. Methods First, we examined the relationship between the germline false positives and ancestry. Then we developed and implemented a tumor only caller (LumosVar) that leverages differences in allelic frequency between somatic and germline variants in impure tumors. We used simulated data to systematically examine how copy number alterations, tumor purity, and sequencing depth should affect the sensitivity of our caller. Finally, we evaluated the caller on real data. Results We find the germline false-positive rate is significantly higher for individuals of non-European Ancestry largely due to the limited diversity in public polymorphism databases and due to population-specific characteristics such as admixture or recent expansions. Our Bayesian tumor only caller (LumosVar) is able to greatly reduce false positives from private germline variants, and our sensitivity is similar to predictions based on simulated data. Conclusions Taken together, our results suggest that studies of individuals of non-European ancestry would most benefit from our approach. However, high sensitivity requires sufficiently impure tumors and adequate sequencing depth. Even in impure tumors, there are copy number alterations that result in germline and somatic variants having similar allele frequencies, limiting the sensitivity of the approach. We believe our approach could greatly improve the analysis of archival samples in a research setting where the normal is not available. 
546 |a EN 
690 |a Somatic mutation 
690 |a Germline variant 
690 |a Next generation sequencing 
690 |a Cancer 
690 |a Precision medicine 
690 |a Tumor purity 
690 |a Internal medicine 
690 |a RC31-1245 
690 |a Genetics 
690 |a QH426-470 
655 7 |a article  |2 local 
786 0 |n BMC Medical Genomics, Vol 10, Iss 1, Pp 1-17 (2017) 
787 0 |n http://link.springer.com/article/10.1186/s12920-017-0296-8 
787 0 |n https://doaj.org/toc/1755-8794 
856 4 1 |u https://doaj.org/article/fde1123b7aa84a3eadeb4956afa4c35d  |z Connect to this object online.