Chapter 4 Applications of Monte Carlo Simulation in Modelling of Biochemical Processes

The biochemical models describing complex and dynamic metabolic systems are typically multi-parametric and non-linear, thus the identification of their parameters requires nonlinear regression analysis of the experimental data. The stochastic nature of the experimental samples poses the necessity to...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Yazar: Tenekedjiev, Kiril Ivanov (auth)
Diğer Yazarlar: Nikolova, Natalia Danailova (auth), Kolev, Krasimir (auth), Ivanov, Kiril (auth), Danailova, Natalia (auth)
Materyal Türü: Elektronik Kitap Bölümü
Dil:İngilizce
Baskı/Yayın Bilgisi: InTechOpen 2012
Konular:
Online Erişim:OAPEN Library: download the publication
OAPEN Library: description of the publication
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
Diğer Bilgiler
Özet:The biochemical models describing complex and dynamic metabolic systems are typically multi-parametric and non-linear, thus the identification of their parameters requires nonlinear regression analysis of the experimental data. The stochastic nature of the experimental samples poses the necessity to estimate not only the values fitting best to the model, but also the distribution of the parameters, and to test statistical hypotheses about the values of these parameters. In such situations the application of analytical models for parameter distributions is totally inappropriate because their assumptions are not applicable for intrinsically non-linear regressions. That is why, Monte Carlo simulations are a powerful tool to model biochemical processes.
ISBN:14984
Erişim:Open Access