Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

This open access book focuses on robot introspection, which has a direct impact on physical human-robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their...

Full description

Saved in:
Bibliographic Details
Main Author: Zhou, Xuefeng (auth)
Other Authors: Wu, Hongmin (auth), Rojas, Juan (auth), Xu, Zhihao (auth), Li, Shuai (auth)
Format: Electronic Book Chapter
Language:English
Published: Springer Nature 2020
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_41300
005 20200813
003 oapen
006 m o d
007 cr|mn|---annan
008 20200813s2020 xx |||||o ||| 0|eng d
020 |a 978-981-15-6263-1 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-981-15-6263-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a PBTB  |2 bicssc 
072 7 |a TJFM  |2 bicssc 
072 7 |a UYQM  |2 bicssc 
072 7 |a PBWH  |2 bicssc 
100 1 |a Zhou, Xuefeng  |4 auth 
700 1 |a Wu, Hongmin  |4 auth 
700 1 |a Rojas, Juan  |4 auth 
700 1 |a Xu, Zhihao  |4 auth 
700 1 |a Li, Shuai  |4 auth 
245 1 0 |a Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection 
260 |b Springer Nature  |c 2020 
300 |a 1 electronic resource (137 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book focuses on robot introspection, which has a direct impact on physical human-robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods. This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students. 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Robotics  |2 bicssc 
650 7 |a Bayesian inference  |2 bicssc 
650 7 |a Automatic control engineering  |2 bicssc 
650 7 |a Machine learning  |2 bicssc 
650 7 |a Mathematical modelling  |2 bicssc 
653 |a Robotics and Automation 
653 |a Bayesian Inference 
653 |a Control, Robotics, Mechatronics 
653 |a Machine Learning 
653 |a Mathematical Modeling and Industrial Mathematics 
653 |a Robotic Engineering 
653 |a Control, Robotics, Automation 
653 |a Collaborative Robot Introspection 
653 |a Nonparametric Bayesian Inference 
653 |a Anomaly Monitoring and Diagnosis 
653 |a Multimodal Perception 
653 |a Anomaly Recovery 
653 |a Human-robot Collaboration 
653 |a Robot Safety and Protection 
653 |a Hidden Markov Model 
653 |a Robot Autonomous Manipulation 
653 |a open access 
653 |a Robotics 
653 |a Bayesian inference 
653 |a Automatic control engineering 
653 |a Electronic devices & materials 
653 |a Machine learning 
653 |a Mathematical modelling 
653 |a Maths for engineers 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/fa6e966a-df8c-4b90-811c-de596c9fa3f5/2020_Book_NonparametricBayesianLearningF.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/41300  |7 0  |z OAPEN Library: description of the publication