Chapter MEMS Technologies Enabling the Future Wafer Test Systems
As the form factor of microelectronic systems and chips are continuing to shrink, the demand for increased connectivity and functionality shows an unabated rising trend. This is driving the evolution of technologies that requires 3D approaches for the integration of devices and system design. The 3D...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic Book Chapter |
Language: | English |
Published: |
InTechOpen
2018
|
Subjects: | |
Online Access: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | oapen_2024_20_500_12657_49284 | ||
005 | 20210602 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210602s2018 xx |||||o ||| 0|eng d | ||
020 | |a intechopen.73144 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.5772/intechopen.73144 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TJFC |2 bicssc | |
100 | 1 | |a Tunaboylu, Bahadir |4 auth | |
700 | 1 | |a Soydan, Ali M. |4 auth | |
245 | 1 | 0 | |a Chapter MEMS Technologies Enabling the Future Wafer Test Systems |
260 | |b InTechOpen |c 2018 | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a As the form factor of microelectronic systems and chips are continuing to shrink, the demand for increased connectivity and functionality shows an unabated rising trend. This is driving the evolution of technologies that requires 3D approaches for the integration of devices and system design. The 3D technology allows higher packing densities as well as shorter chip-to-chip interconnects. Micro-bump technology with through-silicon vias (TSVs) and advances in flip chip technology enable the development and manufacturing of devices at bump pitch of 14 μm or less. Silicon carrier or interposer enabling 3D chip stacking between the chip and the carrier used in packaging may also offer probing solutions by providing a bonding platform or intermediate board for a substrate or a component probe card assembly. Standard vertical probing technologies use microfabrication technologies for probes, templates and substrate-ceramic packages. Fine pitches, below 50 μm bump pitch, pose enormous challenges and microelectromechanical system (MEMS) processes are finding applications in producing springs, probes, carrier or substrate structures. In this chapter, we explore the application of MEMS-based technologies on manufacturing of advanced probe cards for probing dies with various new pad or bump structures. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/3.0/ |2 cc |4 https://creativecommons.org/licenses/by/3.0/ | ||
546 | |a English | ||
650 | 7 | |a Circuits & components |2 bicssc | |
653 | |a wafer and package test systems, MEMS technology, interconnects, interposer, wafer probes | ||
773 | 1 | 0 | |7 nnaa |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/id/46efffb6-b197-4ad9-b4c3-935c4bef4e4b/58798.pdf |7 0 |z OAPEN Library: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/handle/20.500.12657/49284 |7 0 |z OAPEN Library: description of the publication |