Belief State Planning for Autonomous Driving Planning with Interaction, Uncertain Prediction and Uncertain Perception
This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive be...
Saved in:
Main Author: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Karlsruhe
KIT Scientific Publishing
2021
|
Series: | Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie
47 |
Subjects: | |
Online Access: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | oapen_2024_20_500_12657_51091 | ||
005 | 20211019 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20211019s2021 xx |||||o ||| 0|eng d | ||
020 | |a KSP/1000122855 | ||
020 | |a 9783731510390 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.5445/KSP/1000122855 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TG |2 bicssc | |
100 | 1 | |a Hubmann, Constantin |4 auth | |
245 | 1 | 0 | |a Belief State Planning for Autonomous Driving |b Planning with Interaction, Uncertain Prediction and Uncertain Perception |
260 | |a Karlsruhe |b KIT Scientific Publishing |c 2021 | ||
300 | |a 1 electronic resource (180 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie |v 47 | |
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty. | ||
540 | |a Creative Commons |f by-sa/4.0 |2 cc |4 http://creativecommons.org/licenses/by-sa/4.0 | ||
546 | |a English | ||
650 | 7 | |a Mechanical engineering & materials |2 bicssc | |
653 | |a Autonomes Fahren | ||
653 | |a Entscheidungsfindung | ||
653 | |a Verhaltensgenerierung | ||
653 | |a Trajektorienplanung | ||
653 | |a Interaktion | ||
653 | |a Autonomous Driving | ||
653 | |a Decision Making | ||
653 | |a Behavior Planning | ||
653 | |a Trajectory Planning | ||
653 | |a Interactive Planning | ||
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/id/a5ade6fe-ce9c-49c1-8318-34ea33e56e15/9783731510390.pdf |7 0 |z OAPEN Library: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/handle/20.500.12657/51091 |7 0 |z OAPEN Library: description of the publication |