Matching minors in bipartite graphs
In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of...
Đã lưu trong:
Tác giả chính: | |
---|---|
Định dạng: | Điện tử Chương của sách |
Ngôn ngữ: | Tiếng Anh |
Được phát hành: |
Berlin
Universitätsverlag der Technischen Universität Berlin
2022
|
Loạt: | Foundations of computing
16 |
Những chủ đề: | |
Truy cập trực tuyến: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Tóm tắt: | In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of a cross over a conformal cycle by means of a topological property. Furthermore, we develope a theory for perfect matching width, a width parameter for graphs with perfect matchings introduced by Norin. here we show that the disjoint alternating paths problem can be solved in polynomial time on graphs of bounded width. Moreover, we show that every bipartite graph with high perfect matching width must contain a large grid as a matching minor. Finally, we prove an analogue of the we known Flat Wall theorem and provide a qualitative description of all bipartite graphs which exclude a fixed matching minor. |
---|---|
Mô tả vật lý: | 1 electronic resource (476 p.) |
số ISBN: | depositonce-14958 9783798332522 |
Truy cập: | Open Access |