Matching minors in bipartite graphs

In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Wiederrecht, Sebastian (auth)
Định dạng: Điện tử Chương của sách
Ngôn ngữ:Tiếng Anh
Được phát hành: Berlin Universitätsverlag der Technischen Universität Berlin 2022
Loạt:Foundations of computing 16
Những chủ đề:
Truy cập trực tuyến:OAPEN Library: download the publication
OAPEN Library: description of the publication
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Miêu tả
Tóm tắt:In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of a cross over a conformal cycle by means of a topological property. Furthermore, we develope a theory for perfect matching width, a width parameter for graphs with perfect matchings introduced by Norin. here we show that the disjoint alternating paths problem can be solved in polynomial time on graphs of bounded width. Moreover, we show that every bipartite graph with high perfect matching width must contain a large grid as a matching minor. Finally, we prove an analogue of the we known Flat Wall theorem and provide a qualitative description of all bipartite graphs which exclude a fixed matching minor.
Mô tả vật lý:1 electronic resource (476 p.)
số ISBN:depositonce-14958
9783798332522
Truy cập:Open Access