Probabilistic Parametric Curves for Sequence Modeling

This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key advant...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Yazar: Hug, Ronny (auth)
Materyal Türü: Elektronik Kitap Bölümü
Dil:İngilizce
Baskı/Yayın Bilgisi: Karlsruhe KIT Scientific Publishing 2022
Seri Bilgileri:Karlsruher Schriften zur Anthropomatik 54
Konular:
Online Erişim:OAPEN Library: download the publication
OAPEN Library: description of the publication
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
Diğer Bilgiler
Özet:This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key advantage of this model is given by the ability to generate multi-mode predictions in a single inference step, thus avoiding the need for Monte Carlo simulation.
Fiziksel Özellikler:1 electronic resource (226 p.)
ISBN:KSP/1000146434
9783731511984
Erişim:Open Access