Learning to Quantify

This open access book provides an introduction and an overview of learning to quantify (a.k.a. "quantification"), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related...

Full description

Saved in:
Bibliographic Details
Main Author: Esuli, Andrea (auth)
Other Authors: Fabris, Alessandro (auth), Moreo, Alejandro (auth), Sebastiani, Fabrizio (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2023
Series:The Information Retrieval Series 47
Subjects:
Online Access:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_62385
005 20230413
003 oapen
006 m o d
007 cr|mn|---annan
008 20230413s2023 xx |||||o ||| 0|eng d
020 |a 978-3-031-20467-8 
020 |a 9783031204678 
020 |a 9783031204661 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-031-20467-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UNH  |2 bicssc 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQM  |2 bicssc 
100 1 |a Esuli, Andrea  |4 auth 
700 1 |a Fabris, Alessandro  |4 auth 
700 1 |a Moreo, Alejandro  |4 auth 
700 1 |a Sebastiani, Fabrizio  |4 auth 
245 1 0 |a Learning to Quantify 
260 |a Cham  |b Springer Nature  |c 2023 
300 |a 1 electronic resource (137 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The Information Retrieval Series  |v 47 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book provides an introduction and an overview of learning to quantify (a.k.a. "quantification"), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classification yet different from it, since estimating class proportions by simply classifying all data and counting the labels assigned by the classifier is known to often return inaccurate ("biased") class proportion estimates. The book introduces learning to quantify by looking at the supervised learning methods that can be used to perform it, at the evaluation measures and evaluation protocols that should be used for evaluating the quality of the returned predictions, at the numerous fields of human activity in which the use of quantification techniques may provide improved results with respect to the naive use of classification techniques, and at advanced topics in quantification research. The book is suitable to researchers, data scientists, or PhD students, who want to come up to speed with the state of the art in learning to quantify, but also to researchers wishing to apply data science technologies to fields of human activity (e.g., the social sciences, political science, epidemiology, market research) which focus on aggregate ("macro") data rather than on individual ("micro") data. 
536 |a Istituto di Scienza e Tecnologie dell'Informazione 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information retrieval  |2 bicssc 
650 7 |a Data mining  |2 bicssc 
650 7 |a Machine learning  |2 bicssc 
653 |a Information Retrieval 
653 |a Machine Learning 
653 |a Supervised Learning 
653 |a Data Mining 
653 |a Prevalence Estimation 
653 |a Class Prior Estimation 
653 |a Data Science 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/271df212-584d-42c1-b412-6f0360b4f67e/978-3-031-20467-8.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/62385  |7 0  |z OAPEN Library: description of the publication