Multiscale Cohort Modeling of Atrial Electrophysiology Risk Stratification for Atrial Fibrillation through Machine Learning on Electrocardiograms
An early detection and diagnosis of atrial fibrillation sets the course for timely intervention to prevent potentially occurring comorbidities. Electrocardiogram data resulting from electrophysiological cohort modeling and simulation can be a valuable data resource for improving automated atrial fib...
Bewaard in:
Hoofdauteur: | |
---|---|
Formaat: | Elektronisch Hoofdstuk |
Taal: | Engels |
Gepubliceerd in: |
KIT Scientific Publishing
2023
|
Reeks: | Karlsruhe transactions on biomedical engineering
25 |
Onderwerpen: | |
Online toegang: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
Samenvatting: | An early detection and diagnosis of atrial fibrillation sets the course for timely intervention to prevent potentially occurring comorbidities. Electrocardiogram data resulting from electrophysiological cohort modeling and simulation can be a valuable data resource for improving automated atrial fibrillation risk stratification with machine learning techniques and thus, reduces the risk of stroke in affected patients. |
---|---|
Fysieke beschrijving: | 1 electronic resource (280 p.) |
ISBN: | KSP/1000155927 |
Toegang: | Open Access |