Multiscale Cohort Modeling of Atrial Electrophysiology Risk Stratification for Atrial Fibrillation through Machine Learning on Electrocardiograms

An early detection and diagnosis of atrial fibrillation sets the course for timely intervention to prevent potentially occurring comorbidities. Electrocardiogram data resulting from electrophysiological cohort modeling and simulation can be a valuable data resource for improving automated atrial fib...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Nagel, Claudia (auth)
Formaat: Elektronisch Hoofdstuk
Taal:Engels
Gepubliceerd in: KIT Scientific Publishing 2023
Reeks:Karlsruhe transactions on biomedical engineering 25
Onderwerpen:
Online toegang:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
Omschrijving
Samenvatting:An early detection and diagnosis of atrial fibrillation sets the course for timely intervention to prevent potentially occurring comorbidities. Electrocardiogram data resulting from electrophysiological cohort modeling and simulation can be a valuable data resource for improving automated atrial fibrillation risk stratification with machine learning techniques and thus, reduces the risk of stroke in affected patients.
Fysieke beschrijving:1 electronic resource (280 p.)
ISBN:KSP/1000155927
Toegang:Open Access