Multiscale Cohort Modeling of Atrial Electrophysiology Risk Stratification for Atrial Fibrillation through Machine Learning on Electrocardiograms

An early detection and diagnosis of atrial fibrillation sets the course for timely intervention to prevent potentially occurring comorbidities. Electrocardiogram data resulting from electrophysiological cohort modeling and simulation can be a valuable data resource for improving automated atrial fib...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autore principale: Nagel, Claudia (auth)
Natura: Elettronico Capitolo di libro
Lingua:inglese
Pubblicazione: KIT Scientific Publishing 2023
Serie:Karlsruhe transactions on biomedical engineering 25
Soggetti:
Accesso online:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Riassunto:An early detection and diagnosis of atrial fibrillation sets the course for timely intervention to prevent potentially occurring comorbidities. Electrocardiogram data resulting from electrophysiological cohort modeling and simulation can be a valuable data resource for improving automated atrial fibrillation risk stratification with machine learning techniques and thus, reduces the risk of stroke in affected patients.
Descrizione fisica:1 electronic resource (280 p.)
ISBN:KSP/1000155927
Accesso:Open Access