Self-learning Anomaly Detection in Industrial Production

Configuring an anomaly-based Network Intrusion Detection System for cybersecurity of an industrial system in the absence of information on networking infrastructure and programmed deterministic industrial process is challenging. Within the research work, different self-learning frameworks to analyze...

Täydet tiedot

Tallennettuna:
Bibliografiset tiedot
Päätekijä: Meshram, Ankush (auth)
Aineistotyyppi: Elektroninen Kirjan osa
Kieli:englanti
Julkaistu: KIT Scientific Publishing 2023
Sarja:Karlsruher Schriften zur Anthropomatik 59
Aiheet:
Linkit:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
Kuvaus
Yhteenveto:Configuring an anomaly-based Network Intrusion Detection System for cybersecurity of an industrial system in the absence of information on networking infrastructure and programmed deterministic industrial process is challenging. Within the research work, different self-learning frameworks to analyze passively captured network traces from PROFINET-based industrial system for protocol-based and process behavior-based anomaly detection are developed, and evaluated on a real-world industrial system.
Ulkoasu:1 electronic resource (224 p.)
ISBN:KSP/1000152715
Pääsy:Open Access