Self-learning Anomaly Detection in Industrial Production
Configuring an anomaly-based Network Intrusion Detection System for cybersecurity of an industrial system in the absence of information on networking infrastructure and programmed deterministic industrial process is challenging. Within the research work, different self-learning frameworks to analyze...
Tallennettuna:
Päätekijä: | |
---|---|
Aineistotyyppi: | Elektroninen Kirjan osa |
Kieli: | englanti |
Julkaistu: |
KIT Scientific Publishing
2023
|
Sarja: | Karlsruher Schriften zur Anthropomatik
59 |
Aiheet: | |
Linkit: | OAPEN Library: download the publication OAPEN Library: description of the publication |
Tagit: |
Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
|
Yhteenveto: | Configuring an anomaly-based Network Intrusion Detection System for cybersecurity of an industrial system in the absence of information on networking infrastructure and programmed deterministic industrial process is challenging. Within the research work, different self-learning frameworks to analyze passively captured network traces from PROFINET-based industrial system for protocol-based and process behavior-based anomaly detection are developed, and evaluated on a real-world industrial system. |
---|---|
Ulkoasu: | 1 electronic resource (224 p.) |
ISBN: | KSP/1000152715 |
Pääsy: | Open Access |