Development of a modular Knowledge-Discovery Framework based on Machine Learning for the interdisciplinary analysis of complex phenomena in the context of GDI combustion processes

In this work, a novel knowledge discovery framework able to analyze data produced in the Gasoline Direct Injection (GDI) context through machine learning is presented and validated. This approach is able to explore and exploit the investigated design spaces based on a limited number of observations,...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autore principale: Botticelli, Massimiliano (auth)
Natura: Elettronico Capitolo di libro
Lingua:inglese
Pubblicazione: KIT Scientific Publishing 2023
Serie:Reihe Informationsmanagement im Engineering Karlsruhe 2
Soggetti:
Accesso online:OAPEN Library: download the publication
OAPEN Library: description of the publication
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_63852
005 20230710
003 oapen
006 m o d
007 cr|mn|---annan
008 20230710s2023 xx |||||o ||| 0|eng d
020 |a KSP/1000158016 
040 |a oapen  |c oapen 
024 7 |a 10.5445/KSP/1000158016  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TG  |2 bicssc 
100 1 |a Botticelli, Massimiliano  |4 auth 
245 1 0 |a Development of a modular Knowledge-Discovery Framework based on Machine Learning  |b for the interdisciplinary analysis of complex phenomena in the context of GDI combustion processes 
260 |b KIT Scientific Publishing  |c 2023 
300 |a 1 electronic resource (210 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Reihe Informationsmanagement im Engineering Karlsruhe  |v 2 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In this work, a novel knowledge discovery framework able to analyze data produced in the Gasoline Direct Injection (GDI) context through machine learning is presented and validated. This approach is able to explore and exploit the investigated design spaces based on a limited number of observations, discovering and visualizing connections and correlations in complex phenomena. The extracted knowledge is then validated with domain expertise, revealing potential and limitations of this method. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-sa/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-sa/4.0/ 
546 |a English 
650 7 |a Mechanical engineering & materials  |2 bicssc 
653 |a Gasoline Direct Injection; Data-Driven Development; Machine Learning Application; Datengetriebene Entwicklung; Anwendung des Maschinellen Lernens; Knowledge Discovery; Benzin-Direkteinspritzung 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/d659d894-2331-4a34-9eaf-c1b075acca3f/development-of-a-modular-knowledge-discovery-framework-based-on-machine-learning-for-the-interdisciplinary-analysis-of-complex-phenomena-in-the-context-of-gdi-combustion-processes.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/63852  |7 0  |z OAPEN Library: description of the publication