Motion Planning for Autonomous Vehicles in Partially Observable Environments

This work develops a motion planner that compensates the deficiencies from perception modules by exploiting the reaction capabilities of a vehicle. The work analyzes present uncertainties and defines driving objectives together with constraints that ensure safety. The resulting problem is solved in...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखक: Taş, Ömer Şahin (auth)
स्वरूप: इलेक्ट्रोनिक पुस्तक अध्याय
भाषा:अंग्रेज़ी
प्रकाशित: KIT Scientific Publishing 2023
श्रृंखला:Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie 48
विषय:
ऑनलाइन पहुंच:OAPEN Library: download the publication
OAPEN Library: description of the publication
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000naaaa2200000uu 4500
001 oapen_2024_20_500_12657_77094
005 20231031
003 oapen
006 m o d
007 cr|mn|---annan
008 20231031s2023 xx |||||o ||| 0|eng d
020 |a KSP/1000158509 
040 |a oapen  |c oapen 
024 7 |a 10.5445/KSP/1000158509  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TNK  |2 bicssc 
100 1 |a Taş, Ömer Şahin  |4 auth 
245 1 0 |a Motion Planning for Autonomous Vehicles in Partially Observable Environments 
260 |b KIT Scientific Publishing  |c 2023 
300 |a 1 electronic resource (222 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie  |v 48 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This work develops a motion planner that compensates the deficiencies from perception modules by exploiting the reaction capabilities of a vehicle. The work analyzes present uncertainties and defines driving objectives together with constraints that ensure safety. The resulting problem is solved in real-time, in two distinct ways: first, with nonlinear optimization, and secondly, by framing it as a partially observable Markov decision process and approximating the solution with sampling. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Building construction & materials  |2 bicssc 
653 |a Robotics; Planning under Uncertainty; Decision Making; Information Gathering; Motion Planning; Robotik; Automatisiertes Fahren; Planung unter Unsicherheiten; Entscheidungsfindung; Bewegungsplanung 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/id/5bb51f9e-8964-4bf0-8fc1-1a6d60d14be3/motion-planning-for-autonomous-vehicles-in-partially-observable-environments.pdf  |7 0  |z OAPEN Library: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/handle/20.500.12657/77094  |7 0  |z OAPEN Library: description of the publication