Machine learning characterization of a novel panel for metastatic prediction in breast cancer
<p>Metastasis is one of the most challenging problems in cancer diagnosis and treatment, as causal factors have yet to be fully disentangled. Prediction of the metastatic status of breast cancer is important for informing treatment protocols and reducing mortality. However, the systems biology...
Gorde:
Egile Nagusiak: | Melih Ağraz (Egilea), Umut Ağyüz (Egilea), E Celeste Welch (Egilea), Birol Kuyumcu (Egilea), M Furkan Burak (Egilea) |
---|---|
Formatua: | Liburua |
Argitaratua: |
Global Journal of Perioperative Medicine - Peertechz Publications,
2022-09-28.
|
Gaiak: | |
Sarrera elektronikoa: | Connect to this object online. |
Etiketak: |
Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
Antzeko izenburuak
-
EARN: an ensemble machine learning algorithm to predict driver genes in metastatic breast cancer
nork: Leila Mirsadeghi, et al.
Argitaratua: (2021) -
A novel genomic panel as an adjunctive diagnostic tool for the characterization and profiling of breast Fibroepithelial lesions
nork: Yirong Sim, et al.
Argitaratua: (2019) -
Construction and validation of nomograms combined with novel machine learning algorithms to predict early death of patients with metastatic colorectal cancer
nork: Yalong Zhang, et al.
Argitaratua: (2022) -
Prediction of irinotecan toxicity in metastatic colorectal cancer patients based on machine learning models with pharmacokinetic parameters
nork: Esther Oyaga-Iriarte, et al.
Argitaratua: (2019) -
Human Metastatic Melanoma Cell Lines Panel for In Vitro and In Vivo Investigations
nork: Ekaterina N. Kosobokova, et al.
Argitaratua: (2024)