Machine learning characterization of a novel panel for metastatic prediction in breast cancer
<p>Metastasis is one of the most challenging problems in cancer diagnosis and treatment, as causal factors have yet to be fully disentangled. Prediction of the metastatic status of breast cancer is important for informing treatment protocols and reducing mortality. However, the systems biology...
Gespeichert in:
Hauptverfasser: | Melih Ağraz (Verfasst von), Umut Ağyüz (Verfasst von), E Celeste Welch (Verfasst von), Birol Kuyumcu (Verfasst von), M Furkan Burak (Verfasst von) |
---|---|
Format: | Buch |
Veröffentlicht: |
Global Journal of Perioperative Medicine - Peertechz Publications,
2022-09-28.
|
Schlagworte: | |
Online-Zugang: | Connect to this object online. |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Ähnliche Einträge
Ähnliche Einträge
-
EARN: an ensemble machine learning algorithm to predict driver genes in metastatic breast cancer
von: Leila Mirsadeghi, et al.
Veröffentlicht: (2021) -
A novel genomic panel as an adjunctive diagnostic tool for the characterization and profiling of breast Fibroepithelial lesions
von: Yirong Sim, et al.
Veröffentlicht: (2019) -
Construction and validation of nomograms combined with novel machine learning algorithms to predict early death of patients with metastatic colorectal cancer
von: Yalong Zhang, et al.
Veröffentlicht: (2022) -
Prediction of irinotecan toxicity in metastatic colorectal cancer patients based on machine learning models with pharmacokinetic parameters
von: Esther Oyaga-Iriarte, et al.
Veröffentlicht: (2019) -
Human Metastatic Melanoma Cell Lines Panel for In Vitro and In Vivo Investigations
von: Ekaterina N. Kosobokova, et al.
Veröffentlicht: (2024)