The Potential Role of Store-Operated Calcium Entry (SOCE) Pathways in the Pathophysiology of Epilepsy and Migraine-Like Headaches in Patients with Neurocysticercosis

<p>Cysticercosis is the most common helminthic disease of the nervous system in humans. The clinical presentation of neurocysticercosis (NCC) is nonspecific and can mimic a wide array of primary central nervous system (CNS) disorders, making its diagnosis a challenge especially in endemic area...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Yannick Fogoum Fogang (Egilea)
Formatua: Liburua
Argitaratua: Journal of Neurology, Neurological Science and Disorders - Peertechz Publications, 2017-01-25.
Gaiak:
Sarrera elektronikoa:Connect to this object online.
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Gaia:<p>Cysticercosis is the most common helminthic disease of the nervous system in humans. The clinical presentation of neurocysticercosis (NCC) is nonspecific and can mimic a wide array of primary central nervous system (CNS) disorders, making its diagnosis a challenge especially in endemic areas. The pathophysiology of episodic CNS manifestations of NCC is not well understood. We support the hypothesis that mechanisms used by cysticerci to escape the host's immune system interfere with store-operated calcium entry (SOCE) pathways. This interference may modify brain excitability, leading to episodic manifestations like epilepsy and headaches.</p><p>Recent findings suggest that the store-operated calcium entry (SOCE) signaling pathway expressed in host tissues is downregulated by cysticerci ligands. SOCE regulates a vast array of cellular functions in excitable and non-excitable cells including modulation of neuronal excitability and regulation of synaptic plasticity. Inhibition of the SOCE signaling pathway alters synaptic plasticity and synchronization of cortical neuronal networks in vitro and in vivo. These modifications may lower seizure or headache thresholds, increasing the probability of developing these disorders. This hypothesis could be explored to improve our understanding of the mechanisms involved in episodic manifestations of NCC. If confirmed, potential therapeutic opportunities could be expected from pharmacological modulations of specific proteins in the SOCE signaling pathway.</p>
DOI:10.17352/jnnsd.000011