OG-SLAM: A real-time and high-accurate monocular visual SLAM framework

<p>The challenge of improving the accuracy of monocular Simultaneous Localization and Mapping (SLAM) is considered, which widely appears in computer vision, autonomous robotics, and remote sensing. A new framework (ORB-GMS-SLAM (or OG-SLAM)) is proposed, which introduces the region-based motio...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Boyu Kuang (Tác giả), Yuheng Chen (Tác giả), Zeeshan A Rana (Tác giả)
Định dạng: Sách
Được phát hành: Trends in Computer Science and Information Technology - Peertechz Publications, 2022-07-26.
Những chủ đề:
Truy cập trực tuyến:Connect to this object online.
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000 am a22000003u 4500
001 peertech__10_17352_tcsit_000050
042 |a dc 
100 1 0 |a Boyu Kuang  |e author 
700 1 0 |a  Yuheng Chen  |e author 
700 1 0 |a Zeeshan A Rana  |e author 
245 0 0 |a OG-SLAM: A real-time and high-accurate monocular visual SLAM framework 
260 |b Trends in Computer Science and Information Technology - Peertechz Publications,   |c 2022-07-26. 
520 |a <p>The challenge of improving the accuracy of monocular Simultaneous Localization and Mapping (SLAM) is considered, which widely appears in computer vision, autonomous robotics, and remote sensing. A new framework (ORB-GMS-SLAM (or OG-SLAM)) is proposed, which introduces the region-based motion smoothness into a typical Visual SLAM (V-SLAM) system. The region-based motion smoothness is implemented by integrating the Oriented Fast and Rotated Brief (ORB) features and the Grid-based Motion Statistics (GMS) algorithm into the feature matching process. The OG-SLAM significantly reduces the absolute trajectory error (ATE) on the key-frame trajectory estimation without compromising the real-time performance. This study compares the proposed OG-SLAM to an advanced V-SLAM system (ORB-SLAM2). The results indicate the highest accuracy improvement of almost 75% on a typical RGB-D SLAM benchmark. Compared with other ORB-SLAM2 settings (1800 key points), the OG-SLAM improves the accuracy by around 20% without losing performance in real-time. The OG-SLAM framework has a significant advantage over the ORB-SLAM2 system in that it is more robust for rotation, loop-free, and long ground-truth length scenarios. Furthermore, as far as the authors are aware, this framework is the first attempt to integrate the GMS algorithm into the V-SLAM.</p> 
540 |a Copyright © Boyu Kuang et al. 
546 |a en 
655 7 |a Research Article  |2 local 
856 4 1 |u https://doi.org/10.17352/tcsit.000050  |z Connect to this object online.