Implementation of machine learning for predicting maize crop yields using multiple linear regression and backward elimination / Stephen Gbenga Fashoto ... [et al.]
Predicting maize crop yields especially in maize production is paramount in order to alleviate poverty and contribute towards food security. Many regions experience food shortage especially in Africa because of uncertain climatic changes, poor irrigation facilities, reduction in soil fertility and t...
Sparad:
Huvudskapare: | Fashoto, Stephen Gbenga (Författare, medförfattare), Mbunge, Elliot (Författare, medförfattare), Ogunleye, Gabriel (Författare, medförfattare), den Burg, Johan Van (Författare, medförfattare) |
---|---|
Materialtyp: | Bok |
Publicerad: |
Universiti Teknologi MARA,
2021-04.
|
Ämnen: | |
Länkar: | Link Metadata |
Taggar: |
Lägg till en tagg
Inga taggar, Lägg till första taggen!
|
Liknande verk
Liknande verk
-
Exploring structural equations modelling on the use of modified UTAUT model for evaluating online learning
av: Stephen Gbenga Fashoto, et al.
Publicerad: (2024) -
Crop and non-crop productivity in a traditional maize agroecosystem of the highland of Mexico
av: Martínez-Bernal Angélica, et al.
Publicerad: (2009) -
Environmental and Management Factor Contributions to Maize Yield
av: Frederick E. Below (Ed.)
Publicerad: (2019) -
Plant population is the function of grain yield of maize
av: MAK Mian, et al.
Publicerad: (2021) -
Fertilizer Application on Crop Yield
av: Timsina, Jagadish
Publicerad: (2019)