Handling highly imbalanced output class label: a case study on Fantasy Premier League (FPL) virtual player price changes prediction using machine learning / Muhammad Muhaimin Khamsan and Ruhaila Maskat
In practice, a balanced target class is rare. However, an imbalanced target class can be handled by resampling the original dataset, either by oversampling/upsampling or undersampling/downsampling. A popular upsampling technique is Synthetic Minority Over-sampling Technique (SMOTE). This technique i...
Bewaard in:
Hoofdauteurs: | , |
---|---|
Formaat: | Boek |
Gepubliceerd in: |
Penerbit UiTM,
2019-12.
|
Onderwerpen: | |
Online toegang: | Link Metadata |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
Wees de eerste die reageert!