OPTIMASI RANDOM FOREST TERHADAP DATA TELCO CUSTOMER CHURN MENGGUNAKAN FIREFLY ALGORITHM

Customer churn is the percentage of customers who have stopped or switched using a product/service periodically. The telecommunications industry experiences an average annual churn rate of 30-35%, and acquiring new customers is 5-10 times more expensive than retaining existing ones. Predicting churn...

Full description

Saved in:
Bibliographic Details
Main Author: Abril Muhammad Fikar Wijaya, (Author)
Format: Book
Published: 2024-01-12.
Subjects:
Online Access:Link Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 repoupnvj_29153
042 |a dc 
100 1 0 |a Abril Muhammad Fikar Wijaya, .  |e author 
245 0 0 |a OPTIMASI RANDOM FOREST TERHADAP DATA TELCO CUSTOMER CHURN MENGGUNAKAN FIREFLY ALGORITHM 
260 |c 2024-01-12. 
500 |a http://repository.upnvj.ac.id/29153/1/ABSTRAK.pdf 
500 |a http://repository.upnvj.ac.id/29153/2/AWAL.pdf 
500 |a http://repository.upnvj.ac.id/29153/3/BAB%20I.pdf 
500 |a http://repository.upnvj.ac.id/29153/4/BAB%20II.pdf 
500 |a http://repository.upnvj.ac.id/29153/5/BAB%20III.pdf 
500 |a http://repository.upnvj.ac.id/29153/6/BAB%20IV.pdf 
500 |a http://repository.upnvj.ac.id/29153/7/BAB%20V.pdf 
500 |a http://repository.upnvj.ac.id/29153/8/DAFTAR%20PUSTAKA.pdf 
500 |a http://repository.upnvj.ac.id/29153/9/RIWAYAT%20HIDUP.pdf 
500 |a http://repository.upnvj.ac.id/29153/10/LAMPIRAN.pdf 
500 |a http://repository.upnvj.ac.id/29153/11/HASIL%20PLAGIARISME.pdf 
500 |a http://repository.upnvj.ac.id/29153/12/ARTIKEL%20KI.pdf 
520 |a Customer churn is the percentage of customers who have stopped or switched using a product/service periodically. The telecommunications industry experiences an average annual churn rate of 30-35%, and acquiring new customers is 5-10 times more expensive than retaining existing ones. Predicting churn can be used to help companies identify churners earlier before customer defection occurs. The objective of this research is to perform classification using the Random Forest method combined with the Firefly Algorithm to enhance accuracy. The classification evaluation results using the confusion matrix show an accuracy of 80,48%, precision of 77%, recall of 82,7%, and an F1-score of 79,71% before optimization. After optimization using the Firefly Algorithm, the accuracy increased to 82,08%, precision to 77,7%, recall to 86,2%, and F1-score to 81,6%. 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
546 |a id 
690 |a QA Mathematics 
690 |a QA75 Electronic computers. Computer science 
690 |a QA76 Computer software 
690 |a T Technology (General) 
655 7 |a Thesis  |2 local 
655 7 |a NonPeerReviewed  |2 local 
787 0 |n http://repository.upnvj.ac.id/29153/ 
787 0 |n http://repository.upnvj.ac.id 
856 4 1 |u http://repository.upnvj.ac.id/29153/  |z Link Metadata