Introduction and Implementations of the Kalman Filter

Sensor data fusion is the process of combining error-prone, heterogeneous, incomplete, and ambiguous data to gather a higher level of situational awareness. In principle, all living creatures are fusing information from their complementary senses to coordinate their actions and to detect and localiz...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Andere auteurs: Govaers, Felix (Redacteur)
Formaat: Elektronisch Hoofdstuk
Taal:Engels
Gepubliceerd in: IntechOpen 2019
Onderwerpen:
Online toegang:DOAB: download the publication
DOAB: description of the publication
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
Omschrijving
Samenvatting:Sensor data fusion is the process of combining error-prone, heterogeneous, incomplete, and ambiguous data to gather a higher level of situational awareness. In principle, all living creatures are fusing information from their complementary senses to coordinate their actions and to detect and localize danger. In sensor data fusion, this process is transferred to electronic systems, which rely on some "awareness" of what is happening in certain areas of interest. By means of probability theory and statistics, it is possible to model the relationship between the state space and the sensor data. The number of ingredients of the resulting Kalman filter is limited, but its applications are not.
Fysieke beschrijving:1 electronic resource (128 p.)
ISBN:intechopen.75731
9781838805371
9781838805364
9781838807399
Toegang:Open Access