Nonparametric identification of nonlinear dynamic systems
A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentat...
保存先:
第一著者: | |
---|---|
フォーマット: | 電子媒体 図書の章 |
言語: | 英語 |
出版事項: |
KIT Scientific Publishing
2018
|
シリーズ: | Schriftenreihe des Instituts für Technische Mechanik, Karlsruher Institut für Technologie
|
主題: | |
オンライン・アクセス: | DOAB: download the publication DOAB: description of the publication |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
要約: | A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work. |
---|---|
物理的記述: | 1 electronic resource (XXVIII, 194 p. p.) |
ISBN: | KSP/1000085419 9783731508342 |
アクセス: | Open Access |