Nonparametric identification of nonlinear dynamic systems

A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentat...

詳細記述

保存先:
書誌詳細
第一著者: Kenderi, Gábor (auth)
フォーマット: 電子媒体 図書の章
言語:英語
出版事項: KIT Scientific Publishing 2018
シリーズ:Schriftenreihe des Instituts für Technische Mechanik, Karlsruher Institut für Technologie
主題:
オンライン・アクセス:DOAB: download the publication
DOAB: description of the publication
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work.
物理的記述:1 electronic resource (XXVIII, 194 p. p.)
ISBN:KSP/1000085419
9783731508342
アクセス:Open Access