Nonparametric identification of nonlinear dynamic systems
A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentat...
Furkejuvvon:
Váldodahkki: | |
---|---|
Materiálatiipa: | Elektrovnnalaš Girjji oassi |
Giella: | eaŋgalasgiella |
Almmustuhtton: |
KIT Scientific Publishing
2018
|
Ráidu: | Schriftenreihe des Instituts für Technische Mechanik, Karlsruher Institut für Technologie
|
Fáttát: | |
Liŋkkat: | DOAB: download the publication DOAB: description of the publication |
Fáddágilkorat: |
Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
|
Čoahkkáigeassu: | A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work. |
---|---|
Olgguldas hápmi: | 1 electronic resource (XXVIII, 194 p. p.) |
ISBN: | KSP/1000085419 9783731508342 |
Beassan: | Open Access |