Nonparametric identification of nonlinear dynamic systems

A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentat...

Olles dieđut

Furkejuvvon:
Bibliográfalaš dieđut
Váldodahkki: Kenderi, Gábor (auth)
Materiálatiipa: Elektrovnnalaš Girjji oassi
Giella:eaŋgalasgiella
Almmustuhtton: KIT Scientific Publishing 2018
Ráidu:Schriftenreihe des Instituts für Technische Mechanik, Karlsruher Institut für Technologie
Fáttát:
Liŋkkat:DOAB: download the publication
DOAB: description of the publication
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
Govvádus
Čoahkkáigeassu:A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work.
Olgguldas hápmi:1 electronic resource (XXVIII, 194 p. p.)
ISBN:KSP/1000085419
9783731508342
Beassan:Open Access