Nonparametric identification of nonlinear dynamic systems
A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentat...
Сохранить в:
Главный автор: | |
---|---|
Формат: | Электронный ресурс Глава книги |
Язык: | английский |
Опубликовано: |
KIT Scientific Publishing
2018
|
Серии: | Schriftenreihe des Instituts für Technische Mechanik, Karlsruher Institut für Technologie
|
Предметы: | |
Online-ссылка: | DOAB: download the publication DOAB: description of the publication |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Итог: | A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work. |
---|---|
Объем: | 1 electronic resource (XXVIII, 194 p. p.) |
ISBN: | KSP/1000085419 9783731508342 |
Доступ: | Open Access |