Nonparametric identification of nonlinear dynamic systems

A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentat...

Полное описание

Сохранить в:
Библиографические подробности
Главный автор: Kenderi, Gábor (auth)
Формат: Электронный ресурс Глава книги
Язык:английский
Опубликовано: KIT Scientific Publishing 2018
Серии:Schriftenreihe des Instituts für Technische Mechanik, Karlsruher Institut für Technologie
Предметы:
Online-ссылка:DOAB: download the publication
DOAB: description of the publication
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Итог:A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work.
Объем:1 electronic resource (XXVIII, 194 p. p.)
ISBN:KSP/1000085419
9783731508342
Доступ:Open Access