Objektsensitive Verfolgung und Klassifikation von Fußgängern mit verteilten Multi-Sensor-Trägern

State estimation of an unknown number of objects remains a challenging topic - despite the existence of theoretically bayes-optimal multi-object-filters - due to numerous assumptions in the modeling process. This thesis evaluates such filters in real multi-object-multi-sensor scenarios and proposes...

पूर्ण विवरण

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखक: Pallauf, Johannes (auth)
स्वरूप: इलेक्ट्रोनिक पुस्तक अध्याय
प्रकाशित: KIT Scientific Publishing 2016
श्रृंखला:Forschungsberichte aus der Industriellen Informationstechnik / Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie
विषय:
ऑनलाइन पहुंच:DOAB: download the publication
DOAB: description of the publication
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
विवरण
सारांश:State estimation of an unknown number of objects remains a challenging topic - despite the existence of theoretically bayes-optimal multi-object-filters - due to numerous assumptions in the modeling process. This thesis evaluates such filters in real multi-object-multi-sensor scenarios and proposes necessary extensions to existing models. The main application of the thesis is indoor pedestrian tracking.
भौतिक वर्णन:1 electronic resource (XI, 178 p. p.)
आईएसबीएन:KSP/1000054659
9783731505297
अभिगमन:Open Access