Objektsensitive Verfolgung und Klassifikation von Fußgängern mit verteilten Multi-Sensor-Trägern

State estimation of an unknown number of objects remains a challenging topic - despite the existence of theoretically bayes-optimal multi-object-filters - due to numerous assumptions in the modeling process. This thesis evaluates such filters in real multi-object-multi-sensor scenarios and proposes...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Pallauf, Johannes (auth)
Formatua: Baliabide elektronikoa Liburu kapitulua
Argitaratua: KIT Scientific Publishing 2016
Saila:Forschungsberichte aus der Industriellen Informationstechnik / Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie
Gaiak:
Sarrera elektronikoa:DOAB: download the publication
DOAB: description of the publication
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Gaia:State estimation of an unknown number of objects remains a challenging topic - despite the existence of theoretically bayes-optimal multi-object-filters - due to numerous assumptions in the modeling process. This thesis evaluates such filters in real multi-object-multi-sensor scenarios and proposes necessary extensions to existing models. The main application of the thesis is indoor pedestrian tracking.
Deskribapen fisikoa:1 electronic resource (XI, 178 p. p.)
ISBN:KSP/1000054659
9783731505297
Sartu:Open Access