Objektsensitive Verfolgung und Klassifikation von Fußgängern mit verteilten Multi-Sensor-Trägern
State estimation of an unknown number of objects remains a challenging topic - despite the existence of theoretically bayes-optimal multi-object-filters - due to numerous assumptions in the modeling process. This thesis evaluates such filters in real multi-object-multi-sensor scenarios and proposes...
में बचाया:
मुख्य लेखक: | |
---|---|
स्वरूप: | इलेक्ट्रोनिक पुस्तक अध्याय |
प्रकाशित: |
KIT Scientific Publishing
2016
|
श्रृंखला: | Forschungsberichte aus der Industriellen Informationstechnik / Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie
|
विषय: | |
ऑनलाइन पहुंच: | DOAB: download the publication DOAB: description of the publication |
टैग: |
टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
|
सारांश: | State estimation of an unknown number of objects remains a challenging topic - despite the existence of theoretically bayes-optimal multi-object-filters - due to numerous assumptions in the modeling process. This thesis evaluates such filters in real multi-object-multi-sensor scenarios and proposes necessary extensions to existing models. The main application of the thesis is indoor pedestrian tracking. |
---|---|
भौतिक वर्णन: | 1 electronic resource (XI, 178 p. p.) |
आईएसबीएन: | KSP/1000054659 9783731505297 |
अभिगमन: | Open Access |