Machine Learning Methods with Noisy, Incomplete or Small Datasets

In many machine learning applications, available datasets are sometimes incomplete, noisy or affected by artifacts. In supervised scenarios, it could happen that label information has low quality, which might include unbalanced training sets, noisy labels and other problems. Moreover, in practice, i...

詳細記述

保存先:
書誌詳細
その他の著者: Solé-Casals, Jordi (編集者), Sun, Zhe (編集者), Caiafa, Cesar F. (編集者), Marti-Puig, Pere (編集者), Tanaka, Toshihisa (編集者)
フォーマット: 電子媒体 図書の章
言語:英語
出版事項: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
主題:
オンライン・アクセス:DOAB: download the publication
DOAB: description of the publication
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料