Biodegradable Carriers for Delivery of VEGF Plasmid DNA for the Treatment of Critical Limb Ischemia

The safe and efficient delivery of therapeutic nucleic acid is a prerequisite for an effective DNA therapy. In this study, we condensed the low molecular weight polyethylenimine (PEI, 1.8k Da) with 2,6-pyridinedicarboxaldehyde (PDA), both of which are degradable in vivo, to synthesize a biodegradabl...

Full description

Saved in:
Bibliographic Details
Main Authors: Guang Liu (Author), Zhiwei Fang (Author), Minglu Yuan (Author), Weimin Li (Author), Yunqi Yang (Author), Mier Jiang (Author), Yuanming Ouyang (Author), Weien Yuan (Author)
Format: Book
Published: Frontiers Media S.A., 2017-08-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The safe and efficient delivery of therapeutic nucleic acid is a prerequisite for an effective DNA therapy. In this study, we condensed the low molecular weight polyethylenimine (PEI, 1.8k Da) with 2,6-pyridinedicarboxaldehyde (PDA), both of which are degradable in vivo, to synthesize a biodegradable polycationic material (PDAPEI) to deliver vascular endothelial growth factor (VEGF) plasmid DNA (pDNA). Particle size and zeta potential of this novel degradable PEI derivatives-pDNA nanoparticle were investigated and in vitro cytotoxicity was estimated on human umbilical vein endothelial cells (HUVECs). Using pDNA-encoding VEGF-A and green fluorescence protein (GFP), we also checked transfection efficiency of the vector (PDAPEI) and found its excellent performance at 40 w/w ratio. We successfully established peripheral ischemia animal model on C57/BL6J mice to evaluate the therapeutic effect of PDAPEI/pVEGF-A polyplex system on ischemic disease and a conclusion was made that PDAPEI is a promising gene vector in the treatment of peripheral ischemic artery disease (PAD).
Item Description:1663-9812
10.3389/fphar.2017.00528