Real-time semantic segmentation of gastric intestinal metaplasia using a deep learning approach

Background/Aims Previous artificial intelligence (AI) models attempting to segment gastric intestinal metaplasia (GIM) areas have failed to be deployed in real-time endoscopy due to their slow inference speeds. Here, we propose a new GIM segmentation AI model with inference speeds faster than 25 fra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vitchaya Siripoppohn (Autor), Rapat Pittayanon (Autor), Kasenee Tiankanon (Autor), Natee Faknak (Autor), Anapat Sanpavat (Autor), Naruemon Klaikaew (Autor), Peerapon Vateekul (Autor), Rungsun Rerknimitr (Autor)
Formato: Libro
Publicado: Korean Society of Gastrointestinal Endoscopy, 2022-05-01T00:00:00Z.
Materias:
Acceso en línea:Connect to this object online.
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Internet

Connect to this object online.

3rd Floor Main Library

Detalle de Existencias desde 3rd Floor Main Library
Número de Clasificación: A1234.567
Copia 1 Disponible