Real-time semantic segmentation of gastric intestinal metaplasia using a deep learning approach
Background/Aims Previous artificial intelligence (AI) models attempting to segment gastric intestinal metaplasia (GIM) areas have failed to be deployed in real-time endoscopy due to their slow inference speeds. Here, we propose a new GIM segmentation AI model with inference speeds faster than 25 fra...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | Libro |
Publicado: |
Korean Society of Gastrointestinal Endoscopy,
2022-05-01T00:00:00Z.
|
Materias: | |
Acceso en línea: | Connect to this object online. |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Internet
Connect to this object online.3rd Floor Main Library
Número de Clasificación: |
A1234.567 |
---|---|
Copia 1 | Disponible |