Real-time semantic segmentation of gastric intestinal metaplasia using a deep learning approach
Background/Aims Previous artificial intelligence (AI) models attempting to segment gastric intestinal metaplasia (GIM) areas have failed to be deployed in real-time endoscopy due to their slow inference speeds. Here, we propose a new GIM segmentation AI model with inference speeds faster than 25 fra...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Buch |
Veröffentlicht: |
Korean Society of Gastrointestinal Endoscopy,
2022-05-01T00:00:00Z.
|
Schlagworte: | |
Online-Zugang: | Connect to this object online. |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Online
Connect to this object online.3rd Floor Main Library
Signatur: |
A1234.567 |
---|---|
Exemplar 1 | Verfügbar |